MANUEL DE L'UTILISATEUR DONNÉES DE FAISCEAU SYSTÈME ZAP-X RÉV B

Système de radiochirurgie Zap-X Manuel des données de faisceau E0920-00037

Zap Surgical Systems 590 Taylor Way, Suite A San Carlos, CA 94070, États-Unis

Préface

Zap Surgical Systems offre ce guide sans garantie de quelque nature que ce soit, implicite ou explicite, y compris, sans s'y limiter, les garanties implicites de qualité marchande et d'adéquation à une utilisation particulière. Zap Surgical Systems et ses directeurs, ses dirigeants, ses filiales, ses employés, ses agents, ses héritiers et ayants droit n'assument aucune responsabilité ou obligation, explicite ou implicite, pour toute blessure, tout décès ou toute perte pour les clients, les utilisateurs ou le personnel de service résultant d'une manipulation inappropriée des produits de radiochirurgie par du personnel non autorisé, non formé ou autrement non qualifié. Zap Surgical Systems se dégage expressément de toute responsabilité ou obligation en cas d'abus, de négligence, de mauvaise utilisation ou de modification des composants du système de radiochirurgie par des personnes non autorisées, non formées ou non associées à Zap Surgical Systems.

Si tout produit est modifié d'une façon quelconque, toutes les garanties associées à un tel produit deviendront nulles et non avenues. Zap Surgical Systems décline toute responsabilité et toute obligation quant à la modification ou la substitution non autorisée des sous-systèmes ou des composants.

Avec des soins et un entretien appropriés, la durée de vie utile attendue du système est 10 ans.

Ce manuel s'applique au système de radiochirurgie Zap-X.

Usage prévu

Ce manuel décrit la procédure d'acquisition des données de faisceau.

Les activités d'assurance qualité relèvent de la responsabilité du physicien médical du site ou de son représentant et peuvent avoir une portée plus large que celles énumérées dans les manuels.

Informations sur le système

Mise en garde : aux États-Unis, la loi limite la vente de cet appareil par un médecin ou sur son ordonnance.

Avis :

Le manuel de l'utilisateur contient des instructions pour plusieurs fonctionnalités du système de radiochirurgie Zap-X. Étant donné que certaines fonctionnalités du système de radiochirurgie sont en option, certaines des instructions dans ce manuel peuvent ne pas s'appliquer à votre système.

La disponibilité des options dépend des autorisations réglementaires dans un pays donné et varie d'un pays à l'autre.

Zap Surgical Systems se réserve le droit de réviser ce document et d'en modifier le contenu, de temps à autre selon le besoin, pour garantir la bonne acquis ion des données de faisceau et la bonne utilisation du système de radiochirurgie Zap-X.

Description du dispositif

Le système de radiochirurgie Zap-X (Système Zap-X) est un système contrôlé par ordinateur destiné à la pratique de la radiochirurgie stéréotaxique non invasive et qui est autoblindé contre les rayonnements ionisants et qui utilise un accélérateur linéaire monté sur un portique avec un système d'imagerie (système d'imagerie kV) pour localiser avec précision la cible de traitement. Le système utilise l'anatomie du squelette du patient pour aligner la cible de traitement avec l'isocentre du système. Le système utilise le système d'imagerie kV du Système Zap-X pour suivre le mouvement du patient et ajuster précisément la table pour compenser un tel mouvement pendant le traitement.

Indications d'emploi

Le système de radiochirurgie Zap-X vise à offrir un plan de traitement, de la radiochirurgie stéréotaxique guidée par image et de la radiothérapie de précision pour les tumeurs, les lésions et les affections dans le cerveau, la tête et le cou pour lesquelles la radiothérapie est indiquée.

Mesures de sécurité et mises en garde

L'utilisation en toute sécurité du système de radiochirurgie exige une attention toute particulière aux dangers graves associés à l'utilisation d'accélérateurs linéaires et d'autres équipements de radiochirurgie et de radiothérapie complexes, et aux façons d'éviter ou de minimiser les dangers, et une connaissance des procédures d'urgence. L'utilisation imprudente, ou sans avoir reçu de formation au système de radiochirurgie, risque d'endommager le système, ses composants ou d'autres biens, d'entraîner une performance médiocre ou de causer des dommages corporels, voire la mort. Quiconque opère, répare, entretient ou est autrement lié au système de radiochirurgie doit lire, comprendre et connaître parfaitement les informations contenues dans ce manuel, et prendre des précautions pour se protéger, protéger ses collègues, les patients et l'équipement. À chaque étape de l'installation, des avertissements et des mises en garde spécifiques sont donnés en guise de précisions. Seul le personnel autorisé peut installer le système.

Le personnel doit recevoir une formation de Zap-X Surgical Systems avant que le système de radiothérapie ne soit utilisé à des fins cliniques.

Avertissement : le système peut émettre des doses létales de rayonnement à haute énergie. Les équipements contiennent des circuits à haute tension qui peuvent produire des décharges électriques mortelles. Toujours observer les consignes de sécurité lors de l'utilisation ou au moment de réaliser des travaux sur le système de radiochirurgie.

La réparation et l'entretien des composants matériels doivent être confiés uniquement à du personnel d'entretien qualifié. Si vous estimez que les composants matériels du système de radiothérapie ou les fonctionnalités ou les fonctions du système de planification de traitement associées ne fonctionnent pas comme prévu, ou qu'ils produisent des résultats qui ne sont pas cohérents avec vos protocoles cliniques habituels, contactez Zap Surgical Systems, Inc.

Élimination du dispositif

Lorsqu'un produit Zap atteint la fin de sa vie utile et que votre établissement souhaite mettre le dispositif au rebut, contactez l'assistance à la clientèle de Zap pour mettre hors service, désinstaller et éliminer de manière appropriée ses composants.

Classification réglementaire

Le système de radiochirurgie Zap-X est classé par ce qui suit :

- Protection contre les décharges électriques : classe I, connecté en permanence.
- Pièce appliquée : table de traitement seulement. Type B
- Méthodes de stérilisation ou de désinfection : aucune requise.
 - Degré de sécurité en présence de mélanges inflammables :
 - Ne convient pas à une utilisation en présence de mélanges inflammables.
- Mode de fonctionnement : continu.

Conventions

•

Les conventions décrites ci-dessous sont utilisées dans ce manuel. Familiarisez-vous avec ces conventions avant d'utiliser l'appareil de radiochirurgie Zap-X.

Format d'affichage numérique

Le logiciel du système de radiochirurgie Zap-X et le système de planification de traitement utilisent l'une ou l'autre des conventions de notation suivantes pour afficher les nombres :

- Le point (.) est utilisé comme séparateur décimal.
- Le caractère de la virgule (,) est utilisé comme séparateur des milliers.

Avertissement : quelle que soit la traduction, toutes les données numériques que vous saisissez ou qui sont affichées dans le logiciel utilisent le point (.) comme séparateur décimal. Tenez compte de cette convention de notation lors de l'interprétation ou de la saisie de données numériques. La saisie incorrecte de données numériques pourrait donner lieu à un traitement incorrect ou un préjudice pour le patient.

Terminologie informatique

Ce manuel utilise la terminologie standard des ordinateurs personnels. Zap Surgical Systems suppose que l'opérateur du système sait comment utiliser un ordinateur personnel standard pour accéder aux différentes fenêtres et aux fichiers sur le poste de travail informatique. Consultez la documentation fournie avec l'ordinateur. Les conventions suivantes sont utilisées dans ce manuel.

Cliquer	Appuyer sur le bouton gauche de la souris.
Clic-droit	Appuyer sur le bouton droit de la souris.
Double- cliquer	Appuyer rapidement sur la gauche de la souris deux fois.
CTRL-clic	Voir également : Ctrl-clic : maintenir la touche CTRL enfoncée, puis appuyer sur le bouton principal de la souris.
SHIFT-clic	Maintenir la touche SHIFT enfoncée et appuyez sur le bouton gauche de la souris.
Défiler	Faire défiler la molette de défilement de la souris. <i>Un défilement vers l'arrière</i> fait tourner la molette de défilement, le doigt s'éloignant de la main. <i>Un défilement vers l'avant</i> fait tourner la molette de défilement, le doigt se déplaçant vers la main.
Maintenir	Appuyer sur le bouton de la souris et le maintenir enfoncé pendant qu'une autre fonction est réalisée.
Faire glisser	Placer le curseur sur une zone d'intérêt, cliquer, puis tout en maintenant le bouton enfoncé, déplacer la souris pour sélectionner une zone, créer une fenêtre ou transférer un élément sélectionné.
Sélectionner	Placer le curseur sur un bouton portant un nom et cliquer une fois, ou placer le curseur au début du nom, cliquer, maintenir et faire glisser le nom jusqu'à ce qu'il soit mis en surbrillance (change de couleur).
Ouvrir	Double-cliquer sur le nom d'une fenêtre pour l'ouvrir.

Symboles des avertissements, des mises en gardes et des remarques

Ce manuel utilise des notations spéciales ci-dessous pour attirer votre attention sur les informations importantes.

Avertissement : il s'agit d'une indication qui avertit l'utilisateur de la possibilité de blessure, de décès ou d'autres effets indésirables graves liés à l'utilisation ou à la mauvaise utilisation du dispositif.

Mise en garde : il s'agit d'une indication qui signale à l'utilisateur la possibilité d'un problème avec le dispositif associé à son utilisation ou à sa mauvaise utilisation. L'indication de mise en garde inclut la précaution qui devrait être prise pour éviter le danger.

Remarque : fournit des informations supplémentaires sur un sujet donné.

Table des matières

Chapitre 1 : Introd	uction	.10
Chapitre 2 : Équip	ement et matériaux	.11
Chapitre 3 : Config	guration de BeamScan 4.4 PTW	.13
Chapitre 4 : Config	guration du système avec fantôme d'eau PTW MP3-XS	.28
Chapitre 5 : Centre	er le détecteur PTW sur le fantôme d'eau Phantom MP3-XS	.45
Chapitre 6 : PDD e	et profil du faisceau	.53
Chapitre 7 : Mesu	re des facteurs de sortie	.67
Chapitre 8 : Analys	se des données de faisceau et erreurs fréquentes	.75
Chapitre 9 : Acqui	sition de données de faisceau pour l'algorithme d'étalonnage de la	.83
Glossaire :		.85

Chapitre 1 : Introduction

Ce manuel décrit la méthode d'acquisition de données de faisceau en utilisant Zap-X et les procédures de test se fondent uniquement sur le fantôme d'eau PTW MP3-XS, les détecteurs PTW et BeamScan PTW version 4.4. L'acquisition de faisceaux en utilisant différents fournisseurs de dosimétrie sera soumise à des activités futures selon les besoins des clients. Des exemples d'erreurs typiques commises pendant la mise en service du fantôme d'eau PTW et la collecte de données de faisceau ont été ajoutées pour améliorer la qualité de la collecte des données de faisceau. Car la description et le fonctionnement du kit Zap QA ne sont pas couverts dans ce manuel. Consulter le document Zap E0920-00005 Manuel d'assurance qualité pour le système Zap.

Avertissement : les exemples ou données inclus dans ce manuel sont fournis à titre indicatif uniquement. Ils ne sont pas destinés à un usage clinique.

Chapitre 2 : Équipement et matériaux

Cette section décrit l'équipement et les matériaux utilisés pour effectuer l'acquisition de données de faisceau pour Zap-X dans ce manuel :

- 1. Tandem/unité de contrôle PTW
- 2. Fantôme d'eau PTW MP3-XS
- 3. E0010-00320 Cadre, fantôme d'eau
- 4. PTW modèle TN60023 microSilicon (pour PDD, mesure du profil du faisceau et facteurs de sortie)
- 5. PTW Trufix avec supports, cartouches et dispositif de pointage correspondants avec bout conique
- 6. PTW modèle TN34091 chambre T-REF 10,5 cc avec support (*pour PDD et mesure du profil du faisceau*).
- 7. PTW UNIDOS (pour les mesures de la dose ambiante)
- Enregistreur de données de pression barométrique/humidité/température (instruments Extech)
 - (accessoire pour la mesure du facteur de sortie).
- 9. Thermomètre (pour mesurer la température du réservoir d'eau)
- 10. Gabarits de centrage E0023-00121, E0023-00122 (J-Z) (*pour le centrage du fantôme d'eau*)
- 11. Adaptateur de USB à RS232
- 12. Pointeur de broches Zap E0021-00373
- 13. Inclinomètres: rapporteur d'angle numérique Pro 3600 Mitutoyo ou équivalent avec affichage numérique à 2 décimales. *(pour la mise à niveau du réservoir d'eau sur la table du patient)*
- 14. Eau distillée (10 bouteilles de un gallon).
- 15. Ordinateur de bureau ou ordinateur portable sur lequel *BeamScan 4.4* a été installé

Tableau T. Illages de l'équipelle	ent et des matenaux requis	•
Tandem/contrôleur PTW	PTW MP3-XS	Support de support PTW
Diode MicroSilicon	Support TruFix PTW	Détecteur de référence T- Ref
Support : Axial : 431 / 4311		
Électromètre PTW UNIDOS	Enregistreur de données Extech	Thermomètre
PTW UNIDOS ""1:37:5 M426 -0.54" #190 -0.54" #190 -0.11" Exam -0.11" Exam -0.11" Exam -0.10" Exam -0.1		
Gabarits de centrage	Adaptateur de USB à R232	Pointeur de broches avant Zap
J-C J-Z		
Rapporteur d'angle numérique	10 bouteilles de un gallon d'eau distillée	Ordinateur portable
Facultatif : microDiamond PTW		

Tableau 1: Images de l'équipement et des matériaux requis :

Chapitre 3 : Configuration du logiciel BeamScan PTW version 4.4

Cette procédure a été écrite spécifiquement pour l'acquisition de données de faisceau Zap-X et couvre des sujets se limitant aux application de Zap-X et les collectes de données de faisceau en utilisant BeamScan PTW version 4.4. Pour les fonctionnalités supplémentaires, des descriptions détaillées ou des procédures de fonctionnement manquantes du BeamScan 4.4 dans ce manuel, consulter le mode d'emploi du BeamScan PTW 4.4. Pour l'étalonnage du fantôme d'eau MP3-XS PTW, la licence du logiciel BeamScan 4.4 et la procédure d'installation, contacter les représentants PTW locaux pour obtenir de l'aide.

A)<u>Configuration de la chambre ionique PTW pour les</u> <u>applications Zap-X :</u>

1. Depuis Toolbox, sélectionner *Configuration*, puis *Detector Library*.

2. Depuis *PTW templates*, sélectionner le détecteur applicable, puis cliquer à droite sur le détecteur sélectionné :

PTW templates (46)												
PTW 23331 Rigid	T23331	-	1 cm ³ PMMA/AI	1	0.395	0.075		400.0	3.030E+07	Medium	V	Thimble ic
	Copy and renam	e selected o	detector									
PTW 23332 Rigid	PTW 23332 Rigid Delete selected detector		/AI	0.3	0.250	0.100		400.0	1.000E+08	Medium	~	Thimble in
1.01	Change picture.	•]										
PTW 23333 Farme	Create detector	from templa	ate /Al	0.6	0.305	0.050	2	400.0	5.000E+07	Medium	~	Thimble in
-	Create detector	from scratcl	h									minoleic
PTW 23343 Markus	T23343	-	plane-parallel	0.055		0.265	0.2	300.0	5.000E+08	Medium	✓	Markus el
PTW 30001 Farmer	T30001	-	0.6 cm ^a PMMA/Al	0.6	0.305	0.050	0	400.0	5.000E+07	Medium	V	Thimble io
PTW 30002 Farmer	T30002	-	0.6 cm ³ all Graphite	0.6	0.305	0.050		400.0	5.000E+07	Medium	V	Thimble ic
PTW 30004 Farmer	T30004	_	0.6 cm ³ C/Al	0.6	0.305	0.055		400.0	5.000E+07	Medium	✓	Thimble ic
PTW 30006 Farmer	T30006	-	0.6 cm ³ waterproof	0.6	0.305	0.055		400.0	5.000E+07	Medium	V	Thimble ic
	1.		· (L.	1.5				1	>
Showa	additional paran	neters										
ON	 Detector detail 	ls	+ OFF Comment	(OFF Sigma parar	neters						
ON	Chamber volta	ge / polarity	y OFF Manufacturer		DN BEAMSCAN							
ON	Calibration											

3. Sélectionner « Create Detector from template ».

4. Saisir le **S/N** (numéro de série) pour chaque détecteur nouvellement créé.

Répéter la même procédure avec les détecteurs applicables actuels.

N	PTW-Detector Library											-	Ø X
File	e Edit Tools Help												
۲	Name	Type number	SN	Description	Nominal measuring volume [cm³]	Measurement volume radius [cm]	Central electrode radius [cm]	Measuring volume depth [cm]	Nominal HV [V]	Nominal cal. factor N [Gy/C]	Range for BEAMSCAN	Air density correction	D
\odot	User defined detectors (1	1)											_
1	PTW 23331 Rigid (1)	T23331	-	1 cm ³ PMMA/AI	1	0.395	0.075		400.0	3.030E+07	Medium	<	Thimble ic
1	PTW 31010 Semiflex (1)	T31010	006228	0.125 cm ³ PMMA/AI	0.125	0.275	0.055		400.0	3.030E+08	Medium	•	Thimble ic
	PTW 31010 Semiflex (2)	T31010		0.125 cm ³ PMMA/AI	0.125	0.275	0.055		400.0	3.030E+08	Medium	✓	Thimble ic
1	PTW 34091 T-REF (1)	T34091	_	Thin Window plane-parallel	10.5		5	0.2	400.0	3.080E+06	Medium	✓	Plane para
1	PTW 60018 Diode SRS (1)	T60018	000463	Diode	0.0003			0.025	0.0	5.710E+06	High		Dosimetry
1	PTW 60018 Diode SRS (2)	T60018	000626	Diode	0.0003			0.025	0.0	5.710E+06	High		Dosimetry
~	PTW 60018 Diode SRS (3)	T60018	e e e e e e e e e e e e e e e e e e e	Diode	0.0003			0.025	0.0	5.710E+06	High		Dosimetry
1	PTW 60019 microDiamond	T60019		Diamond	3.8E-06			0.0001	0.0	1.000E+09	Low		Diamond
8	Show add	ditional paramete Detector details Chamber voltage / Calibration	rs polarity	OFF Comment OFF Manufacture	r	OFF Sigma ON BEAMS	parameters ICAN						>

5. Le tableau *User defined detectors* est maintenant créé.

6. Depuis *User defined detectors*, sélectionner les bons détecteurs en cliquant sur les cases à cocher :

riie	Eur Ioois Heip	1		1	Nominal	Measurement	Central	Measuring				T
۲	Name	Type number	SN	Description	measuring volume [cm ⁸]	volume radius [cm]	electrode radius [cm]	volume depth [cm]	Nominal HV [V]	Nominal cal. factor N [Gy/C]	Range for BEAMSCAN	Air densit
()	User defined detectors (1	1)										
V	PTW 23331 Rigid (1)	T23331	-	1 cm ³ PMMA/AI	1	0.395	0.075		400.0	3.030E+07	Medium	V
V	PTW 31010 Semiflex (1)	T31010	006228	0.125 cm ² PMMA/AI	0.125	0.275	0.055		400.0	3.030E+08	Medium	~
	PTW 31010 Semiflex (2)	T31010	-	0.125 cm ² PMMA/AI	0.125	0.275	0.055		400.0	3.030E+08	Medium	7
~	PTW 34091 T-REF (1)	T34091	2 575	Thin Window plane-parallel	10.5		\$3	0.2	400.0	3.080E+06	Medium	
•	PTW 60018 Diode SRS (1)	T60018	000463	Diode	0.0003			0.025	0.0	5.710E+06	High	
•	PTW 60018 Diode SRS (2)	T60018	000626	Diode	0.0003			0.025	0.0	5.710E+06	High	
v	PTW 60018 Diode SRS (3)	T60018	_	Diode	0.0003			0.025	0.0	5.710E+06	High	
v	PTW 60019 microDiamond	T60019		Diamond	3.8E-06			0.0001	0.0	1.000E+09	Low	
18.	Show add	ditional paramete Detector details Chamber voltage /	rs polarity	OFF Comment OFF Manufacture	r	OFF Sigma ON + BEAMS	parameters CAN			I		1

B) <u>Configuration de la bibliothèque des appareils de</u> <u>rayonnement :</u>

1. Depuis *Configuration,* sélectionner *Radiation unit Library* :

2. Copier le contenu des tableaux ci-dessous pour chaque onglet en surbrillance dans la colonne de gauche.

		Quality	
		Collimator	
		SSD	
		Field	
		Wedge	
		Applicator	
		Accessory	
		EPID	
		MV imaging system	
		Manufacturer	
PTW - Radiation un File Edit Tools He	t Library	>	<
Zap_X ~			
General	Name	Zap_X	
Quality	Radiation unit type	Linear accelerator ~	1
Collimator			
Commutor	C		1
SSD	Source collimator distance [cm]]
SSD Field	Source collimator distance [cm] Source isocenter distance [cm]	45.0]
SSD Field Wedge	Source collimator distance [cm] Source isocenter distance [cm] Isocenter height [cm]	45.0]
SSD Field Wedge Applicator	Source collimator distance [cm] Source isocenter distance [cm] Isocenter height [cm]	45.0	
SSD Field Wedge Applicator Accessory	Source collimator distance [cm] Source isocenter distance [cm] Isocenter height [cm] Flattening filter	45.0	
SSD Field Wedge Applicator Accessory EPID	Source collimator distance [cm] Source isocenter distance [cm] Isocenter height [cm] Flattening filter Gantry rotation direction	45.0 Clockwise ×	
SSD Field Wedge Applicator Accessory EPID MV imaging system	Source collimator distance [cm] Source isocenter distance [cm] Isocenter height [cm] Flattening filter Gantry rotation direction Gantry upright position	45.0 Clockwise ~ 0° ~	
SSD Field Wedge Applicator Accessory EPID MV imaging system Manufacturer	Source collimator distance [cm] Source isocenter distance [cm] Isocenter height [cm] Flattening filter Gantry rotation direction Gantry upright position	45.0 Clockwise	

General

3. Attribuer le bon plan désigné en fonction de la configuration suivante :

E0920-00037 REV B

 Inplane axis designation
 Ortho (A arm, Y)

 Crossplane axis designation
 Wheel (C arm, X)

 Depth axis designation
 Depth

 Inplane axis direction
 Gun to target

 Crossplane axis direction
 Left to right

 Implane axis direction
 V

 Implane axis direction
 Left to right

	'P							
Zap Surgical Systems	~							
General	Chang	ges made t	o existing values aff	ect al	I radiation units using	the beam	New	Delete
Quality	qualit	у.					INCIV	Delete
Collimator	Used	Modality	Energy [MV/MeV]	FFF	Nominal dmax [mm]			
SSD	Photo	ons (1)						
Field	~	Photons	3.0		7.0			
Wedge								
Applicator								
Accessory								
EPID								
MV imaging system								
Manufacturer								
Comment								
								\sim
📄 Ready								

📰 PTW - Radiation un	nit Libra	ry					_		×
File Edit Tools He	lp								
Zap Surgical Systems	~								
General	Chang	es made	e to existing values	affect all radiatio	n units using the col	limator.	New	Delet	e
Quality	l								
Collimator	Used	Name	Number of leaves	Leaf width [cm]	Leaf direction				
SSD		Wheel							_
Field	1								
Wedge	1								
Applicator	1								
Accessory									
EPID									
MV imaging system									
Manufacturer									
Comment									
Comment									
									~
🛑 Ready									
								_	. I
PIW - Radiation un	nit Librai	ry					-		×
File Edit Tools He	elp								
Zap Surgical Systems	~								
General	Chang	jes made	e to existing values	affect all radiation	units using the SSD	. [New	Delete	
Quality	Used	SSD for	m]			-			~
Collimator	USEU	45.0	10						_
SSD		45.0							- 1
Field									
Wedge	1								
Applicator	1								
Accessory	1								
EPID									
MV imaging system	1								
Manufacturer	1								
Comment	1								
L. C.									
									\sim
Ready									

General	Chang	nes made to ev	visting values affer	t all radiation units using the fie	ld New D	ا م
Quality	chung	ges made to er	usung values anec	and a realization and a sing the ne		cic
Collimator	Used	Inplane [cm]	Crossplane [cm]	Shape		
SSD	~	0.4	0.4	Circular		
Field -	~	0.5	0.5	Circular		
Wedge	~	0.75	0.75	Circular		
Applicator	~	1.0	1.0	Circular		
	1	1.25	1.25	Circular		
FRID	~	1.5	1.5	Circular		
MV imaging system	1	2.0	2.0	Circular		
Manufacturer	1	2.5	2.5	Circular		
Comment						

Sauter ces sections :

PTW - Radiation ur	iit Library			×
File Edit Tools He	lp			
Zap Surgical Systems	×			
General	Changes made to existing values affect all radiation units using the wedge.	New	Dele	te
Quality	Used Name Wedge angle [*] Wedge type			
Collimator	Lore limit linear sign (1) linear the			
SSD				
Field				
Wedge				
Applicator				
Accessory				
EPID	Not use			
Manufacturer				
Comment				
Comment				
				2
🍺 Ready				

4. Sélectionner File, puis enregistrer une fois terminé.

		T	PTW - Radiation	unit Library		_	×
		File	Edit Tools	Help			
5	Save	Ctrl+S	х	~			
6	Local backup		heral	Name	Zap_X		
	Import from MEPHYSTO mc ²		ality	Radiation unit type	Linear accelerator		~
×	Exit	Alt+F4	limator	Source collimator distance [cm]	[

C) <u>Configurer les options étape par étape Zap :</u>

1. Aller à *Relative Dosimetry* : sélectionner *MP3-XS*, puis *Water Tank Scans*.

2. Sur la page *Water Tank Scans*, sélectionner Tools, puis Step-By-Steps Options.

- 3. Sur la page **Step-By-Step Options**, configurer **Cylindrical** depuis l'onglet déroulant depuis **Detector.**
- 4. Sélectionner l'une des options préchargées en surbrillance bleue :

Step-By-	Step Options
Modality	<al></al>
Energy	(all) 💌
Detector	cylindrical 💌
Actual Set	MEDRES
BEAMSCA HIGHRES LOWRES MEDRES	N_MR

5. Cliquer sur , « Copy of Medres » est créé.

Modality	<all></all>
Energy	<al></al>
Detector	cylindrical 🗨

- 6. Sur Actual Set, changer pour ZAP :
- 7. Suivre les **Onglets** et modifier le contenu tel que recommandé :

Step-By-Step	Options
Modality F	Photons 💌
Energy[MV]	3.0 💌
Detector <	all>
Actual Set Z	AP
BEAMSCAN HIGHRES LOWRES MEDRES ZAP	MR
Сору	Delete

Step-By-Step Options				×
Modality Photons 💌	PDD Steps	Profile Steps	Speeds	Delay Times
Energy[MV] 3.0 Detector Actual Set ZAP AA BEAMSCAN_MR CDPY OF ZAP HIGHRES LOWRES MEDRES ZAP		Steps Measure Along Steps Resolution:	Image: state	anges from [mm] Step [mm] 0.0 0.3 15.0 2.0 106.4 5.0 250.0 250.0
Copy Delete				
				OK Cancel

Iodality Photons	PDD Steps	Profile Steps	Speeds) D	elay Times
100	Field	Steps	1.1	Ranges	7.40
aedOVMA1 [C9D]	Belevence Size: 25 cm	Manuna Exclusion	7	From [mm] S	tep [mm]
etector (ab) v	Helefence Size.] 2.5 cm	measure (rankries		-30.0	0.4
		Resolding 🕌	2	-20.0	0.2
ctual Set ZAP		nesonan ar	1	-10.0	0.8
EAMCCAN MR				0.0	0.8
HIGHRES				10.0	0.2
0WRES .				20.0	0.4
IEDRES				30.0	1.0
др	Display for Any Size			Symmetriz	e Ranges
	-30 -20	-10 0	10	20	30
		Profile	Position [mm]		
		1 10/180	. source band		

Step-By-Step Options				×
Modality <al></al>	PDD Steps	Profile Steps	Speeds	Delay Times
Energy[MV] Call> Detector cylindrical Actual Set ZAP AA BEAMSCAN_MR COPY OF ZAP HIGHRES LOWRES MEDRES ZAP				Speeds From [mm] Speed [mm/s] 0.0 5 20.0 5 40.0 5 100.0 5 300.0 5
	5 mm/s 5 mm/s	5 mm/s	5 mm/s	
	0	100	200	300
		De	epth [mm]	
Copy Delete				
				OK Cancel

D. Configurer le protocole d'analyse Zap :

1. Sur la page ci-dessous, sélectionner Icône

2. Ouvrir tout fichier Mephysto existant, puis sélectionner numérisation du profil depuis MCC Files depuis vos dossiers.

60^

3. Cliquer sur Icône Analyze pour effectuer une analyse de l'un des profils Wheelplane ou Orthoplane. Sur la page PTW-DataAnalysze Analyze, cliquer sur Edit, puis cliquer sur Edit Protocols.

		-	-	
	Ed	lit <u>V</u> iew	<u>G</u> raphics	
	Ē	<u>E</u> dit Pro	tocols	[
		<u>С</u> ору	1	
4.	Sélectionner Siemen, puis cliquer su	ır ——	, puis cha	nger Copy of Siemens pour
Fdi	protocols and parameters			

sur Edit protocols and parameters

5. Cliquer et modifier PH profile et PH PDD comme illustré ci-dessous :

Zap	EL PDD	📄 📄 Bragg Peak 📄 📃 PH FFF Profile
*AAPM-TG51	PH Profile	EL Profile PH PDD
*AERBFFF *AFSSAPS No 93 Bragg Peak *DIN 6800-2 (2008) Elekta Elekta 2016 *IAEA398 *IAEC 60976 *IPEMB *NACP Siemens Varian Varian 2016 Zap	View ✓ CAX Dev. [mm] ✓ Field Size [mm] ✓ Pen. Left [mm] Ø Pen. Right [mm] Dmax [%] Dmin [%] Dav [%] Flatness ± [%] ✓ Wedge Angle [*] Max.Dose Ratio [] ✓ Flatneed Region ✓ Field Size at SID [mm] F80 F90 [mm]	Central Axis Deviation Position of the center of the field at the defined value, with respect to the coordinate origin. Caption: CAX Dev. Unit: mm ▼ Between 50.00 % Values

6. Modifier **PH profile**, puis changer l'unité à **mm**.

7. Sur **Symmetry (%)** de **PH profile**, changer pour la sélection en surbrillance ci-dessous :

Edit protocols and para	meters			
Zap	EL PDD		Bragg Peak	PH FFF Profile
*AAPM-TG51	PH Profile	Ĩ	EL Profile	🏹 🔽 PH PDD
ALRBFFF *AFRSFFF *AFSSAPS No 93 Bragg Peak *DIN 6800-2 (2008) Elekta Elekta 2016 *IAEA398 *IEC 60976 *IPEMB *NACP Siemens Varian Varian 2016 Zap	 View ✓ CAX Dev. [mm] ✓ Field Size [cm] ✓ Pen. Left [mm] ✓ Pen. Right [mm] Dmax [%] Dmin [%] Dave [%] ✓ Flatness [%] ✓ Symmetry [%] Wedge Angle [*] Max.Dose Ratio [] ✓ Flattened Region ✓ Flattened Region 		Symmetry Indicator for the symmetry of a prothe flattened region. Caption: Symmetry Maximum Dose $\left(\frac{D_{(x)}}{D_{L-x}}\right)$ Area Ratio $\left \frac{a-b}{a-b}\right $ Where a is the integral over the variation $\left(\frac{D_{(x)}}{D_{L-x}}\right)$ Max. $\left(\frac{D_{(x)}}{D_{L-x}}\right)$	ofile. Symmetry is determined within $\frac{1}{2} \cdot \frac{100.00}{100.00}$ the left half of the profile, b the integration (3)
				<u> </u>

Edit protocols and parameters	5		×
Edit protocols and parameters Zap *AAPM-TG51 *AERBFFF *AFSSAPS No 93 Bragg Peak *DIN 6800-2 (2008) Elekta Elekta 2016 *IAEA398 *IEC 60976 *IPEMB *NACP Siemens Varian Varian 2016 Zap	EL PDD ✓ PH Profile ✓ View ✓ R100 [mm] □ R80 [mm] □ R50 [mm] ○ R* [mm] □ Ds [%] ✓ D100 [%] □ Dx [%] □ Dx [%] □ Dx [%] □ NAP [MV]	Bragg Peak EL Profile Rx Depth of any user selected dose Caption: Rx Value: 85.00	Value
<u>C</u> opy <u>D</u> elete Load Default			
			<u>O</u> K <u>C</u> ancel

8. Modifier **PH PDD**, puis changer l'unité à **mm**.

9. Cliquer sur , puis quitter.

Chapitre 4 : Configuration du système avec fantôme d'eau MP3-XS PTW

Configuration mécanique du réservoir d'eau PTW :

- 1. Se connecter à Zap-X, puis mettre le système sous tension.
- 2. Depuis le tableau de bord,
- 3. Cliquer sur et pour **System Initialization** et Daily QA respectivement.

aboard			
	ZAP	© ° ° + C 1	Dashboard
• IV MA MS	And Object 1	Coleman	

4. Depuis *Daily QA : Table and Gantry*, cliquer sur *Open Both* dans la section *Door/Shell* pour ouvrir la coque et la porte en même temps.

5. Depuis la section *Gantry*, utiliser l'onglet déroulant pour déplacer le portique à *North Pole*.

- 6. Sélectionner *North Pole*, puis cliquer sur *Move*.
- 7. Depuis *Table Position*, cliquer sur *Extend Table* pour déployer complètement la table du patient.
- 8. Sélectionner l'onglet Water Tank pour commencer la configuration du fantôme d'eau PTW.

	Daily QA Steel Table and Gantry Gantry Move To: North Pole Specify Distance Axial: 0	Ball F Bracket Dose Move: Oblique: 0	Water Tank]	Table Position	Note: User must manu	ally position	the table	<u>.</u>	#	TOP (Đ
Door/Shell Open Door Open Shell Open Both Close Both	Door/Shell	Open Door Open Shell Open Both	Close Door Close Shell Close Both									

9. Zap recommande d'utiliser une bande adhésive à l'intérieur de la chambre de traitement pour prévenir les déversements accidentels d'eau pendant le mouvement du réservoir d'eau.

<u>Remarque</u> : Plus de mouvement axial jusqu'au retrait de la bande adhésive !

10. Retirer l'appui-tête de la table du patient (des vis ont été insérées depuis la surface inférieures).

11. Installer le support PTW (dix vis ont été insérées depuis le dessus).

- 12. Retirer les trois pattes du MP3-XS PTW, puis placer le réservoir vide sur le support PTW.
- 13. Insérer 2 pointes de centrage J-C (avant) et J-Z (arrière) pour aligner et fixer le réservoir au support.

- 14. Placer le tandem PTW, le contrôleur et Unidos Romeo à côté de la console.
- 15. Connecter tous les câbles à l'unité de contrôle et au tandem comme illustré ci-dessous :

16. Insérer tous les câbles PTW à l'exception du câble RS232 dans le trou latéral du système à côté de la console.

Controller

- 17. Connecter le câble RS232 à l'ordinateur portable ou à l'ordinateur de bureau.
- 18. Raccorder l'alimentation au tandem PTW et à Unidos Romeo.
- 19. Connecter les câbles PTW « Motor movement » et « Control Movement » à la boîte de jonction PTW.
- 20. Brancher 3 câbles axiaux à la boîte de jonction. (A, B, C) et le câble pour contrôler le boîtier de commande suspendu (à l'avant de la boîte de jonction).

21. Connecter le boîtier de commande suspendu PTW au contrôleur du boîtier de commande suspendu.

22. Appuyer sur le bouton d'alimentation pour mettre sous tension la commande TBA, puis configurer HT/polarité du champ et du canal de référence :

23. Déplacer sur le dessus les trois boutons et les écrous supérieurs, puis vérifier que le support ne touche pas les rails en dessous.

- 24. Avant de mettre le réservoir d'eau au niveau, vérifier si le rapporteur d'angle a besoin ou non d'être étalonné en comparant la lecture à 0 et 180 degrés au même endroit. Si la différence est supérieure à 0,01 degré, effectuer l'étalonnage du rapporteur d'angle jusqu'à ce que la différence soit < 0,01 degré. (Consulter le manuel du fabricant pour effectuer l'étalonnage.)</p>
- 25. Vérifier l'alignement du bras A, B et C conformément au manuel PTW.
- 26. Utiliser le boîtier de commande suspendu PTW pour déplacer le montage du détecteur près de l'extrémité des bras A et C dans la direction + .

- 27. Remplir le réservoir d'eau avec 7 gallons d'eau distillée ou au 2/3 du réservoir en utilisant des bouteilles de 1 gallon.
- 28. Déplacer le bras **C** au-dessus du niveau de l'eau si le bras si trouve sous le niveau de l'eau.
- 29. Ajuster la mise à niveau du réservoir d'eau avec les boutons en mesurant l'angle des bras A et C en plaçant le rapporteur d'angle sur le bras A ou C. Essayer de configurer < 0,1 degré pour les bras A et C si possible.

30. Après la mise à niveau du réservoir, installer l'adaptateur universel PTW T4316/U341, puis le dispositif de pointage T4316/U361 pour le réglage du niveau d'eau.

Figure R. Universal adapter T4316/U341 (install on the C-axis) 1 C-axis of the moving mechanism 2 Universal adapter 3 Cylinder bolts M4x10 for universal adapter 1 2 Figure B: Pointing device T4316/0361 (installed on the universal adapter T4316/0361) 1 Pointing device 2 Fastening boil for pointing device

31. Utiliser le boîtier de commande suspendu pour déplacer les bras **A** et **C** vers les repères de référence pour le centrage du **dispositif de pointage** avec le centre de la zone de balayage.

32. Déplacer le bras **B** dans la direction – ve à 1/3 en dessous du dessus du réservoir d'eau.

Pour les étapes suivantes, deux personnes devront être présentes pour la configuration du réservoir d'eau.

- 33. Pour déterminer le niveau de l'eau situé à 450 mm SAD, utiliser le pointeur de broches Zap.
- 34. S'allonger sur la table avec le pointeur dans la main. (Faire preuve de prudence avec l'extrémité pointue du pointeur de broches.)

35. La 1^{ère} personne guide la 2^e personne pendant qu'elle pousse le réservoir d'eau vers l'arrière du portique jusqu'à ce que le pointeur de broches PTW se trouve environ sous la roue du collimateur.

36. Insérer le pointeur de broches Zap dans le trou de 25 mm du collimateur pour définir la position 450 mm SAD.

37. Déplacer lentement le dispositif de pointage PTW en le rapprochant du pointeur de broches Zap (sans toucher, en gardant un écart de 2 à 3 mm) à l'aide du boîtier de commande suspendu, puis ajuster la position du réservoir d'eau avec l'aide de la 2^e personne.

Avertissement : Lors de l'alignement du dispositif de pointage des broches PTW avec le dispositif de pointage Zap, utiliser le mode ralenti pour l'ajustement final, car la pointe du dispositif de pointage PTW peut facilement être endommagée !

Ortho Plane Side

Wheel Plane Side

- 38. Une fois que les deux pointes se touchent **presque**, ajuster les pointes du **dispositif de pointage** du côté du plan de la **roue**, puis du côté du plan **ortho**.
- 39. Utiliser le mode ralenti pour lever le dispositif de pointage PTW pour qu'il touche la pointe du pointeur de broches avec le bras B en direction -ve.
- 40. Se rendre immédiatement au boîtier de commande suspendu du contrôle PTW et configurer sa

position à **zéro** en appuyant sur la touche pour configurer le niveau d'eau à 450 mm SAD.

41. Vérifier que la valeur de A, B et C est « 0 » sur le boîtier de commande suspendu du contrôle PTW. Il s'agira de la position « zéro ».

origin

0.0

Appuyer sur la touche	F3pou	ır quitte	er.
		Move A B C	Zero Poin te coordinate (00.0 000.0 000.0
	1	52.00	Inor I

42. Demander à la 2^e personne d'enregistrer la position de la table du patient depuis le moniteur en la prenant en note ou en prenant une photo depuis l'écran du moniteur. Les informations sur la coordonnées de la table seront nécessaires plus tard pour le centrage initial du détecteur.

CONTROL PENDANT

Image: Surgical systems Daily QA Steel Ball F Bracket Water Tank Table and Gantry Dose		
rGantry Move To: Specify Distance to Move: Axial: 0 Oblique: 0 Move By	Note: User must manually position the table.	CIR STOP B
r Door/Shell Open Door Close Door Open Shell Close Shell Open Both Close Both		
P 🐼 KV 75 MA 35 MS 57 Axial 180.0 Oblique 180.0 Table	-10.0 40.0 -50.0 Collimator 0.0 😵 🎯 🖉 🐻 🔘 💌	+ I > -

43. Appuyer sur la touche sur le boîtier de commande suspendu pour abaisser le **dispositif de pointage PTW** en l'éloignant du **pointeur de broches Zap** d'environ **80** à **100 mm** en utilisant le bras **B**.

⚠

Avertissement : Si le mode **rapide** est utilisé par erreur dans la direction opposée, la pointe du dispositif de pointage PTW risque d'être détruite et le dispositif devra être remplacé.

- 44. Se rendre à la roue du collimateur, puis retirer délicatement le pointeur de broches Zap.
- 45. Demander à la 2^e personne de sortir complètement la table du patient.
- 46. Après avoir quitté la table du patient, appuyer sur la touche pour déplacer les bras à la position zéro pour régler le niveau d'eau à 450 mm SAD. (SSD = 450 mm)

47. Remplir le réservoir d'eau distillée jusqu'à ce que le niveau d'eau soit le même que celui de la pointe du dispositif de pointage PTW. Cela peut être confirmé en regardant la réflexion de la pointe du dispositif de pointage sous l'eau.

- 48. Configurer les limites du servomoteur du réservoir d'eau à la limite INFÉRIEURE et SUPÉRIEURE des trois bras en suivant les étapes suivantes :
 - a. Appuyer sur la touche « sur le boîtier de commande suspendu du contrôle PTW,

puis en appuyant sur la touche pour afficher la limite INFÉRIEURE comme illustré ci-dessous :

b. Commencer d'abord avec le servomoteur du bras **A** en appuyant sur la touche « -**A** » pour déplacer le bras C lentement vers la gauche sans toucher la paroi du réservoir d'eau, puis appuyer sur la touche F2 pour configurer.

Avertissement : Éviter de toucher à la paroi du réservoir d'eau pendant le déplacement du bras A à l'aide du dispositif de pointage PTW. Si le dispositif de pointage touche la paroi du réservoir, il risque d'incliner le bras B et causer un mauvais alignement avec un petit angle plutôt que perpendiculaire à la surface de l'eau.

- c. Appuyer sur la touche pour déplacer le servomoteur du bras **A** à la position **zéro** en mode rapide.
- d. Continuer la configuration de la limite **inférieure** de -B et -C en appuyant sur les touches

et **et r**espectivement.

- e. Appuyer sur la touche pour configurer la limite **inférieure** des servomoteurs A, B et C.
- f. Appuyer sur la touche pour passer à la configuration de la limite **supérieure**.
- g. Procéder à la configuration de la limite supérieure des servomoteurs A, B et C en

appuyant sur la touche ^{F1} la limite inférieure.

PÌW CON	TROL PEN	IDANT
FAST SLOW	итs - А	+ A
GOTO ZERO ZE	RO B	+ B
GOTO REF	=F - C	+ C
STOP CTRL SE	F1 TUP	F3

- h. Appuyer sur la touche pour configurer la limite **supérieure** des servomoteurs A, B et C.
- 49. Appuyer sur la touche sur le boîtier de commande suspendu du contrôle PTW pour revenir à la position zéro pour A, B et C.
- 50. La configuration du fantôme d'eau PTW est terminée et l'appareil est prêt à réaliser l'acquisition des données de faisceau.

- 51. Lors de l'acquisition du faisceau, retirer le fantôme du réservoir d'eau PTW en procédant comme suit :
 - a. Aller à la page *Daily/Water Tank* Zap-X, puis cliquer sur *Open Both* dans *Shell/Door.*

Daily QA Steel Ball F Bracket Water Tank Table and Gantry Dose Gantry Move Move To: Move North Pole Move Specify Distance to Move: Axial: 0 Oblique: 0 Move By	Table Position	₽ (510P) G
Door/Shell Open Door Close Door Open Shell Close Shell Open Both Close Both		

- b. Cliquer sur *Open Both* pour ouvrir la porte et la coque.
- c. Tirer très lentement sur la table du patient pour la sortir complètement jusqu'à ce qu'elle s'arrête.
- d. Mettre le tandem/contrôleur ou les dosimètres hors tension.
- e. Débrancher tous les câbles, puis les retirer du Zap-X à travers le port latéral.
- f. Retirer le détecteur PTW installé, les supports et le T-Ref du réservoir d'eau.
- g. Fermer la soupape manuelle à une extrémité du tuyau d'eau, puis connecter l'autre extrémité au fond du réservoir d'eau en utilisant les déconnexions rapides comme illustré ci-dessous :

h. Ouvrir la soupape manuelle, puis drainer l'eau du réservoir d'eau dans plusieurs bouteilles de 1 gallon.

- i. Retirer les gabarits de centrage et le réservoir d'eau du système.
- j. Retirer le support PTW.
- k. Réinstaller l'appuie-tête du patient avec des vis insérées depuis le dessous.
- I. Le retrait du réservoir d'eau est terminé. S'assurer qu'il ne reste aucune gouttelette d'eau dans le système.

Chapitre 5 : Centrer le détecteur PTW sur le fantôme du réservoir d'eau

Le centrage du détecteur PTW avec le faisceau de photons est important pour obtenir un CAX, Dmax, PDD % Dose, D10 et pénombre gauche/droite pendant l'acquisition des données de faisceau. Dans **BeamScan 4.4**, la fonctionnalité de vérification du centre a été éliminée du Mephysto et fait maintenant partie de *Relative Beam measurement* sous *Auto Setup Mode.*

1. Sur l'ordinateur de bureau, cliquer sur l'icône Navigator, sélectionner **Relative Dosimetry** :

2. Sélectionner Detector Positioning :

e	Devices	Tools	?				
	•			_			
	1			1			
	Detector		Water p	hantom			
Dr	Field det	ector ·					
	_						Ш
I		Detec	tor not fe	ound			Ш
I							Ш
N	\sim						Ш
	O Mount	ted hor	izontally				Ш
	Mount	ted ver	tically				Ш
ι							J١
ſ	Position	correc	tion —				٦L
							Ш
	Positio	oning o	n chamb	er axis		(\overline{n})	Ш
						U	Ш
	Position o	orractic			0.00		Ш
	Position o	onecu			0.00		Ш
	-						1
	Position						
ſ	rosition						11
			۵		^	mm	Ш
			<u>^</u>		*		Ш
- L			В		÷	mm	Ш
- L							Ш
			C		÷	mm	Ш
							Ш
				1.			
			Speed	5	0	mm/s	Ш
			Speed	5	0 🗘	mm/s	
			Speed	5	0 🗘	mm/s	
			Speed		•	mm/s	
l			Speed		•	mm/s	
l			Speed	Goto	NP	mm/s	
		N	Speed	Goto M	o ∲ ₩P	mm/s	

3. Dans *Field Detector*, cliquer sur la photo pour sélectionner le détecteur qui a été créé dans *User defined detectors*, puis sélectionner le détecteur de votre choix. Pour Zap-X, nous recommandons d'utiliser le détecteur à diode *60023 microSilicon PTW*. (Facultatif avec *microDiamond*)

		Description	SIN	Calibration factor N [Gy/C]	Measuring volume radius [cm]	
PTW 310	21 Semiflex 3D (1)	0.07 cm ³ PMMA/Al	142551		0.24	
PTW 600	23 microSilicon (1)	Diode	151962			
PTW 600	19 microDiamond (1)	Diamond	-			

4. Utiliser le bon support et la bonne cartouche selon la mesure de la dose :

Type of Measurement	Holder	Thimble	Mounting	Detector	T-Ref	Preference
Relative	431	4311	Vertical	microSilicon	No	Zap
Relative	431	4309	Vertical	microDiamond	No	Optional

- 5. Une fois la configuration du fantôme d'eau PTW terminée, appuyer sur la touche sur la boîtier de commande suspendu du contrôle PTW pour déplacer le support du détecteur à la position SAD configurée précédemment.
- 6. Après avoir sélectionné or , la photo du détecteur sélectionné s'affichera. Sélectionner l'orientation de montage du détecteur de champ en position **verticale** comme illustré ci-dessous :

7. Cliquer ensuite sur l'icône ^{Water phantom} pour sélectionner MP3 comme fantôme d'eau.

🔚 Select water phantom	×
MP3 ~	
Connection	
	New
ОК	Cancel

- X
- 8. Cliquer sur pour connecter le dosimètre/contrôleur à l'ordinateur en sélectionnant **RS232** sur **Type.**

New Connection	on		
Туре	RS232	•	
Propert Value			
Name			
COM			-
Baud 57600			•
Enter the name	of connection.		
Check	Search	ОК	Cancel

- 9. Sélectionner « Search » pour connecter, puis sélectionner Ok.
- 10. Une fois que la communication entre l'ordinateur portable et le dosimètre a été établie avec succès, quitter *Detector Positioning*.
- 11. Sélectionner *Water Tank Scan* pour commencer le centrage du détecteur.

- 12. Avec Auto Setup mode active (en surbrillance jaune), modifier la taille du champ et la profondeur sur Adjust Parameters.
- 13. Cliquer sur la case **Beam center adjustment** pour positionner le détecteur par rapport au centre du faisceau.

Auto	Setup mode ac	tive
Auto Setup	Linac	Measurement
Adjust Parameters	2.50 x 2.50 am2	Edit
Depth	7.0 mm	
Reference Run		
Leveling	Auto Manu	Leveling ual Leveling
	C Num	erical Input
	Inclination	nA ["]
	mainatio	
🔽 Beam Center Adjus	stment	
	Zero Shifi Zero Shifi	t A [mm] t C [mm]
Auto Field Alignme	nt	
Co.	Rotation	A . C 19
	notation.	

14. Cliquer sur l'onglet *LINAC* et *Measurement* pour vérifier ou modifier la configuration comme illustré ci-dessous :

A10 3	out mode douve	Auto St	stup mode a	
Linac	Measurement	Auto Setup	Linac	Measuremen
	Accelerator Name Zap Surgical Sy • Modality PHOTONS • Energy(MV) 3.0 • Wedge Open •	TANDEM Max. Doole F 30 [Gy/ 60023 micro y 34091 T-REI	Rate Meas /min] Silicon (1)	wise vs Time v Time [s] 0.10
	Block None Field [cm] x [cm] Ontho (Y) Wheel (X) 250 × 250 ✓	AutoSetupMod	le I Use Seti	settings for non Auto ap measurements
- 2.5 cm -	Field size defined at	- 100 - 200 - 300		
	Setup SSD [cm] 45 Gantry (*) 0.0 Collimator (*) 0.0	L	. R	
			Mediu	m Water 💌
umment		Comment		

15. Zap recommande d'avoir différentes étapes de profil pour le centrage du détecteur avec une résolution de numérisation plus élevée en créant un nouveau protocole comme **Zap Centering** par exemple :

Step-By-Step Options					×
Modality Photons 💌	PDD Steps	Profile Steps	Speeds	γ	Delay Times
Energy[MV]	Field Reference Size: 2.5 cm Display for Any Size	Steps Measure Fanlines Resolution:	▼	Ranges From [mm] -5.6 0.0 5.6 10.0 20.0 30.0 40.0 ✓ Symmetrix	Step [mm] • 0.4 • 0.4 • 0.4 • 0.4 • 0.4 • 0.4 • 0.4 • 0.4 • 0.4 • 0.4 • 0.4 • 0.4 • • • rize Ranges •
	-40 -30	-20 -10 Prof	0 10 20 ile Position [mm]	30	40
				0	IK Cancel

- 16. Avant le centrage du détecteur, cliquer sur l'icône pour mettre le dosimètre à zéro.
- 17. S'il se produit une erreur pendant la mise à zéro, vérifier le câble RS232/USB ou la connexion du port USB.
- 18. Une fois la mise à zéro terminée, aller à Daily QA/ Water Tank sur Zap-X pour faire ce qui suit :

Daily QA Steel Ball F Bracket <u>Water Tank</u>		
Table and Gantry Dose		
Gantry Move To: North Pole Move Specify Distance to Move: Axial: 0 Oblique: 0 Move By	Table Position	≓ <mark>STOP</mark> G
Door/Shell Open Door Open Shell Open Shell Open Both Close Both		
P 🗙 0.00 KV 95 MA 25 MS 20 Axial 270.0 Oblique 90.0 Table	e 0.0 -0.1 0.0 Collimator 25.0 🔮 💿 🖉 📾 🔿	 → ● ● ●

- a. Vérifier que le portique se trouve en position North Pole.
- b. Cliquer sur *Dose*, puis utiliser l'onglet déroulant de *Collimator* pour sélectionner 25 mm collimator.

Daily QA Steel Ball F Bracket Water	Tank			
Collimator Configure Collimator Collimator Beam Requested MU 50000	2 Beam On PIV Auto-off H	nd Rate Checks		
Calibration Primary Rate Primary MU Measured Dr	(MU/min) 1.958 1614.525	Secondary Rate (MU/min) Secondary MU	-0.007 1565.285	₽ STOP G
Working Prin	nary Factor 1.000	Working Secondary Factor	1.000	
Saved Prima	ry Factor 1.000	Saved Secondary Factor	1.000	
P 🔮 0.00 KV 95 MA 25 MS 20 Axi	al 270.0 Oblique 90.0 Table 0.0 -	0.1 0.0 Collimator 25.0	(a) (c) (a) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	> . [])

c. Configurer la dose à 10 000 UM et

d. Depuis la console, appuyer sur le bouton de gauche pour activer HV, puis cliquer sur *l'onglet* **Beam-On dans la** section Beam.

Après avoir appuyé sur *Beam-On*, il deviendra jaune. Il est recommandé de sélectionner HV Auto-off pour mettre le faisceau hors tension lorsque la dose requise est atteinte.

	Beam Requested MU	50000 Beam On Beam On	HV is off Beam is off
		Primary Rate (MU/min) 1.958 Primary MU 1614.525 2 Measured Dose (cGy)	Secondary Rate (MU/min) -0.007 Secondary MU 1565:285 Compute
HV On		Working Primary Factor 1.000	Working Secondary Factor 1.000
		Saved Primary Factor 1.000	Saved Secondary Factor 1.000

- 19. Aussitôt que Dose ou Dose Rate s'affiche, cliquer sur **BeamScan** pour commencer la numérisation du profil pour Ortho et Wheel plane.
- 20. Après la 1^{ère} numérisation de profil, BeamScan affichera dans quelle mesure le détecteur se trouvant non centrée sur le centre du faisceau dans le plan XY (bras A et C) comme illustré cidessous :

Auto	o Setup mode ac	tive
Auto Setup	Linac	Measurement
Adjust Parameters		Edt
Field Size	2.50 x 2.50 cm ²	
Depth	7.0 mm	
Reference Run		
5-3		
- Laurina	C. Martin	Levelon
Leveng	C Man	usi Leveling
u 🗃 🚛 📰 🖬	C Num	erical Input
	Incinatio	nA [1]
	Incinatio	nC [1]
🗵 Ream Center Adu	imant	
	oundra.	
	Zero Shi	It A [mm] 0.2
	Zero Shi	ft C [mm] 0.0
Auto Field Alignme	rt	
0		
(O° I		
N		
~	Rotation	A · C [']

Répéter à nouveau la numérisation du profil en suivant les mêmes étapes, le détecteur sera déplacé automatiquement vers le centre du faisceau et le Beam Center Adjustment affichera <u>Zero</u>
 <u>Shift</u> pour les positions A et C.

22. CAX Dev. of OrthoPlane (bras A) et WheelPlane (bras C) devraient afficher une valeur proche de zéro mm comme ci-dessous :

- 23. Le centre du détecteur est maintenant aligné avec le faisceau de photons.
- 24. Outre la procédure de centrage utilisée pour l'alignement du détecteur/faisceau de photons, elle peut également être utilisée pour pré-numériser le détecteur selon différentes tailles de collimateur avant de *Output Factor Measurement*, en particulier toutes les tailles de collimateur plus petites que 10 mm pour des résultats précis.

Chapitre 6 : Dose en profondeur en pourcentage (PDD) et profils des faisceaux

Pour réaliser la dose en profondeur en pourcentage et les profils de faisceaux, Zap recommande d'utiliser microSilicon et T-Ref sont recommandés pour toutes les mesures. microdiamond est un détecteur alternative optionnel selon la préférence du client.

Type of Measurement	Holder	Thimble	Mounting	Detector	T-Ref	Preference
PDD / Profiles	431	4311	Vertical	microSilicon	Yes	Zap
PDD / Profiles	431	4308	Vertical	microDiamond	Yes	Optional
Note: T-Ref Chamber Type 34091						

Une fois que la configuration du réservoir d'eau PTW a été réalisée avec les coordonnées connues de la table du patient, il est prêt à configurer le réservoir d'eau pour réaliser PDD et les profils de faisceaux. Le tableau ci-dessous présente les supports Trufix PTW nécessaires et la configuration des détecteurs :

1. Serrer la cartouche 4311 à la main dans le support PTW 431.

2. Insérer le détecteur microSilicon PTW dans la cartouche/le support, puis s'assurer que le détecteur touche le dessus de la cartouche avant de serrer à la main la vis en plastique pour retenir le détecteur au support.

3. Retirer la cartouche du support

4. Retirer le dispositif de pointage PTW, puis installer le détecteur sur l'adaptateur universel T4316/U341 PTW.

- 5. Connecter le détecteur **microSilicon** PTW au **Tandem** PTW par le biais du câble de champ (de couleur bleu).
- 6. Configurer la chambre T-Ref sur le fantôme du réservoir d'eau :
 - a. Assembler la tige au **support T-Ref** T4316/U563 en serrant la vis en plastique à la main.

- b. Monter la **bride en C** sur la paroi latérale du **réservoir d'eau** en serrant les 2 vis, puis installer le kit de **support T-Ref** sur la **bride en C**.
- c. Ajuster le centre du **support T-Ref** juste au-dessus du détecteur **microSilicon**. S'assurer que la distance entre le **support T-Ref** et le <u>détecteur</u> est supérieure à 20 cm tel que recommandé dans le manuel.
- d. Placer la **chambre T-Ref** sur le support T-Ref avec la surface plane sur le dessus, puis fixer la chambre T-Ref en place en serrant les 2 vis en plastique à la main sur les côtés.

- e. Revérifier la distance requise, puis serrer toutes les vis une fois de plus.
- f. Le configuration de la chambre T-Ref est terminée.

GOTO

- 7. Inspecter tous les câbles à l'intérieur des portiques, puis s'assurer qu'ils sont suffisamment longs et qu'ils n'empêchent pas le mouvement de la **table du patient**.
- 8. Revérifier que le détecteur se trouve en position zéro ou appuyer sur zero sur le **boîtier de commande suspendu du contrôle**.
- 9. Déplacer manuellement et lentement le réservoir d'eau dans les portiques sans déverser d'eau.
- 10. Déplacer manuellement et lentement la section supérieure et inférieure de la **table du patient** sans déverser d'eau à l'extérieur du réservoir d'eau.
- 11. Lorsque la section inférieure de la table du patient cesse de bouger, demander à la 2^e personne de vous guider pour déplacer le réservoir d'eau à la position précédemment enregistrée pour SAD à la main. (Consulter le chapitre 4, configuration du réservoir d'eau, section XXXXX.

Warning: Patient Table movement is disabled while Zap-X is on Water Tank mode. Do not use system control mode to move the patient table as rapid vibration can occur due to the feedback of servo-motor to water movement in Water Tank.

- 12. Essayer d'ajuster le **réservoir d'eau** à +/- 0,1 de la position de la **table du patient** précédemment définie.
- 13. Fermer la coque et la porte.
- 14. Aller à **BeamScan**, puis suiver le **Chapitre 5** pour réaliser le centrage du détecteur avec le microSilicon ou le détecteur de votre choix.

Pour obtenir des profils de faisceaux précis sans se soucier à avoir à mettre parfaitement au niveau le réservoir d'eau, **BeamScan 4.4** offre **le mode de décalage de l'inclinaison de faisceau** pour fournir un ajustement automatique basé sur l'inclinaison de la configuration du réservoir d'eau.

15. Les étapes ci-dessous décrivent comment activer le **mode de décalage de l'inclinaison de faisceau** :

a. Une fois le centrage du détecteur terminé, appuyer une fois sur Auto Setup pour désactiver la configuration automatique. Seul l'onglet Linac and Measurement s'affiche comme illustré ci-dessous :

Linac	Measurement
	Accelerator Name Zap Surgical Sy. Modality PHOTONS Energy(MV) 3.0 Wedge Open Block None
SSD SD SD SD SD SD SD SD SD SD SD SD SD	Field (cm) × (cm) Ortho (Y) Wheel (X) 2.50 × 2.50 • Field size defined at SID •
	Setup SSD [cm] 45 • Gantry [*] 0.0 Collimator [*] 0.0
Comment:	

b. Sur la page Linac, copier toutes les informations comme illustré ci-dessous :

- c. Configurer le Zap-X Linac en faisant glisser la touche déroulante (choisir le 3^e réglage).
- d. La taille du champ sera changée ne fonction de la taille de collimateur utilisée.
- e. Tous les faisceaux Zap-X sont en forme de cônes.

Max. Dose Ra	te Stepwise vs Time nin] Meas. Time [s] 0.20
60023 microS with Referen 34091 T-REF	ilicon (1) 1 (1) 2
PDD and Profiles	Defaults
Change View	
	Profiles 📑
- 100	I Ortho (A arm, Y) P.
200	Angle [*] 💌 0.0
	Offaxis [mm] 0.0
- 300	Wheel (Carm, X) P.
G	Angle [*] 💌 0.0
	Offaxis [mm] 0.0
L	R- ☐ halfsided Profiles
	Depths [mm]
L I	7.0 50.0 100.0 200.0 👻
	1

f. Sur la page Measurement, consulter les zones encerclées pour régler la configuration :

g. Cliquer sur la photo, puis sélectionner Tandem. Copier le débit de la dose, puis configurer les informations comme suit :

h. Cliquer sur la photo du détecteur, puis sélectionner *With Reference*. Sélectionner PTW 60023 microSilicon pour Field Channel et PTW 34091 T-REF pour Reference channel respectivement.

Name	Description	SN	Calibration factor N [Gy/C]	Nominal HV [V]	N		
✓ PTW 60023 microSilicon (1)	Diode	151962		0			
PTW 34091 T-REF (1)	Thin Window plane-parallel	-		400			
						ктр	1.00
					Calibrated in Electrometer	ktp kuser	1.00

Reference Channel PTW 34091 T-REF (1)

Name	Description	SN	Calibration factor N [Gy/C]	Nominal HV [V]	
PTW 60023 microSilicon (1)	Diode	151962		0	
PTW 34091 T-REF (1)	Thin Window plane-parallel			400	

i. Depuis le menu déroulant, sélectionner *Beam Inclination*.

Beam Inclination	-
Points Continuous TPR Measurement Step-By-Step TPR Measurement BeamAdjust	^
Beam Inclination	
OutputFactors	
Stationary Scans TG51 Lead Foil Distance	~

OK

Cancel

j. Après avoir sélectionné *Beam Inclination*, modifier la mesure *Depths* de 7,0 mm et 250 mm.

Linac	Measu	rement
TANI Mai [15.0] 6002 Image: Second sec)EM . Dose Rate . [Gy/min] 3 microSilicon ith Reference 1 T-REF (1)	Stepwise vs Time
Beam Inclination		✓ Defaults
Change V - 100 - 200 - 300	R	Profiles Ortho Profiles Inclination Angle(*) Wheel Profiles Inclination Angle(*) Set Beam Inclination
		Depths [mm] 7.0 250.0
		Medium Water 💌
Comment		

- k. La configuration du mode de décalage de l'inclinaison de faisceau est terminée.
- 16. Avant de lancer *Beam Inclination*, cliquer sur zero pour mettre le dosimètre à zéro. S'il se produit une erreur pendant la mise à zéro, vérifier le *câble R232/USB* ou la *connexion du port USB*.

- 17. Une fois la mise à zéro terminée, aller à **Daily QA/ Water Tank** sur **Zap-X** pour faire ce qui suit :
 - a. Vérifier que le portique se trouve à *North Pole* sur *l'onglet Table and Gantry*.

Daily QA Steel Ball F Bracket Water Tank		
Table and Gantry Dose		
Gantry Move To: North Pole Specify Distance to Move: Axial: 0 Oblique: 0 Move By	Table Position	
Door/Shell		
Open Shell Close Shell		
Open Both Close Both		
P 😵 0.00 KV 95 MA 25 MS 20 Axial 270.0 Oblique 90.0 Tabl	le 0.0 -0.1 0.0 Collimator 25.0 🕥 💿 🖉 🔞 🔿	> 🔹 🕕 🔊

- b. Cliquer sur l'onglet *Dose*, puis saisir 30 000 UM.
- c. Appuyer sur *HV* pour mettre l'alimentation sous tension.
- d. Cliquer sur *Beam on* pour allumer le faisceau.

Collimator [Configure [Collimator	Turn Laser On	_	Dose and Rate Checks -			
Beam	50000 Beam C	n PHV Auto-	off HV is off Beam is	: off		
Calibration	Primary Rate (MU/min)	1.958		Secondary Rate (MU/min)	-0.007	
	Measured Dose (cGy)	1019.525		Compute	1909.205	
	Working Primary Factor	1.000		Working Secondary Factor	1.000	
			T Res	et 1 Save 1		
	Courd Drivery Forders	1.000		Saund Connections Forders	1.000	

e. Aussitôt que **Dose** ou **Dose Rate** s'affiche, cliquer sur **BeamScan** pour commencer la numérisation du profil pour Ortho et wheel plane.

 f. Après la numérisation de Wheel et Ortho plane à 7 et 250mm, l'angle d'inclinaison (profil Y) pour Ortho et l'angle d'inclinaison (profil X) pour Wheel; le plan affichera l'angle d'inclinaison pour Ortho et Wheel Plane comme illustré ci-dessous :

g. Cliquez sur **Set Beam Inclination** pour enregistrer la mise au niveau du réservoir d'eau et **Beam inclination Offset Mode** devient actif.

Remarque : Pour *BeamScan 4.4,* il permet certaines imperfections au niveau de la mise au niveau du réservoir d'eau avec une petite inclinaison (< 1,0 degré). Le profil de faisceau sera automatiquement ajusté en fonction de l'angle d'inclinaison mesuré et une surbrillance de couleur *orange* au-dessus de l'onglet <u>Linac</u> et <u>Measurement</u> indique que le *mode de décalage de l'inclinaison de faisceau* est activé. Pour une bonne pratique, nous devrions mettre au niveau le *réservoir d'eau* le mieux que nous puissions à < 0,1 degré d'inclinaison pour Ortho et Wheel Plane.

h. Vous êtes maintenant prêt(e) à réaliser PDD et un profil de faisceau pour la taille et les différentes profondeurs de collimateur requises.

18. Pour commencer PDD et la mesure du profil, aller à l'onglet <u>Drop-down</u> de *BeamScan* pour sélectionner *PDD and Profile*.

Beam Inclination	-
PDD and Profiles	~
Plane parallel to central beam	
Plane perpendicular to central beam	
Star Pattern	
Points	
Continuous TPR Measurement	
Step-By-Step TPR Measurement	
BeamAdjust	~

19. Aussitôt que *PDD and Profile* est sélectionné, un cadre orange s'affiche comme illustré cidessous :

Linac	Measurement
Mak Dos	e Rate (Gy/min) Meas. Time [s] 0.10
60023 mid ✓ with Re 24091 T-1	croSilicon (1) ference BEE (1)

Precaution: Once you exited Relative Dosimetry, Beam Inclination Offset will not be saved for the next beam scanning. You will need to repeat Beam Inclination runs.

20. Si vous n'apercevez pas la barre en surbrillance ou le cadre avec le mode de décalage de l'inclinaison de faisceau actif, répéter le même processus jusqu'à ce que la barre orange s'affiche.

21. Cliquer sur les cases, copier les informations comme illustré ci-dessous, puis saisir différentes profondeurs en fonction de vos exigences :

PDD and Profiles	Defaults
Change View	PDD
- 100	Profiles
- 200 - 300	Offaxis [mm]
	✓ Wheel (C arm, X) P. Angle [*] ✓ Offaxis [mm] 0.0
LB-	halfsided Profiles
	Depths [mm] 7.0 50.0 100.0 200.0 ▼
	Medium Water 💌
Comment: Beam Profile at depth	7.0, 50.0 100.0 200.0 250.0

- 22. Normalement, 5 profondeurs différentes sont sélectionnées pour *Profile Measurements* comme 7, 50, 100, 200 et 250 mm.
- 23. Veuiller utiliser ou pour la numérisation de profil. L'utilisation de peut ne pas donner des résultats répétables avec différentes directions de numérisation.
- 24. La configuration devrait ressembler aux photos ci-dessous avec un collimateur de 25 mm.

		Linac Measurement
	Accelerator Name Zap Surgical Sy Modality PHOTONS Energy(MV) 30 Wedge Open Block Mines	TANDEM Stepwise vs Time Max. Dose Rate Meas. Time [s] 0.10 Most Obcornition (1) V whith Reference 30001 Demo
		PDD and Profiles Defaults
s	SD Ditho (Y) Wheel (X)	Charge View
	2.50 * 2.50 •	-100 Profiles
<u>A</u> 1		- 200 Angle [*] - 200 Offaxis from 0.0
	Field size defined at	- 200
— 2.5 cm —	Field size defined at	- 300 Vheel (C am, X) P.
— 25 cm —	Field size defined at SID Setup SSD [cm] 45	- 300 [7 Wheel (C am, X) P. Angle (1 - 0.0 Official for the second sec
2.5 cm	Field size defined at SD	- 300 Wheel (C am, X) P. Angle (" • 0.0 Offasic (rm) 0.0 Thatsided Profiles
- 25 cm	Field size defined at SID	- 300 V Wheel (C arm, X) P. Arrole (T · 0.0 Offasic (rem) 0.0 V halfsided Profiles Depths (mm)
- 25 an	Field size defined at SID	- 300 V wheel (C am, X) P. Argle (T → 0.0 Offasic (ren) 0.0 T halfsided Profiles Depths (mn) [7 0 50.0 100.0 200.0 ▼

25. Une fois que le contenu des onglets *Linac* et *Measurement* a été complètement configuré, vous êtes prêt(e) à obtenir le pourcentage de la dose en profondeur (PDD) et les profiles de collimateurs de différentes tailles et profondeurs.

En guise de rappel, changer la taille du collimateur avant de passer au test suivant si la taille du collimateur est différente.

26. L'écran final pour les mesures PDD et Profiles devraient afficher ce qui suit :

Remarque : Si le cadre **orange** ou la case en surbrillance n'est pas présent(e), répéter l'étape pour le *mode de décalage de l'inclinaison de faisceau* et *PDD/profile de faisceau* jusqu'à ce que le cadre **orange** s'affiche.

27. Exemples de graphiques typiques pour *PDD and Profiles* Zap-X à différentes profondeurs sont présentés ci-dessous :

b) Profils typiques à 7, 50, 100, 200 et 250 mm de profondeur

Chapitre 7 : Mesure des facteurs de sortie

Normalement, la mesure du facteur de sortie est réalisée immédiatement après la mesure du PDD et des profils. Pour les mesures du facteur de sortie, la configuration est légèrement différente comparativement à la mesure du PDD et des profils. Zap recommande l'utilisation de *microSilicon* monté verticalement pour cette mesure et *microDiamond* peut également être utilisé comme choix alternatif.

Type of Measurement	Holder	Thimble	Mounting	Detector	T-Ref	Preference
Output Factors	431	4309	Vertical	microSilicon	No	Zap
Output Factors	431	4309	Vertical	microDiamond	No	Optional

Le détecteur PTW devrait être réglé à 450 mm de la source comme une mesure en un seul point avec 7 mm d'eau au-dessus du détecteur (SSD= 443 mm). Étant donné que le détecteur T-Ref n'est pas nécessaire pour cette mesure, il devrait être retiré du réservoir d'eau.

Zap recommande également d'utiliser le dosimètre PTW de la série UNIDOS pour une mesure plus précise, en particulier pour les faisceaux plus petits dont la taille est inférieure à 10 mm. Pour l'unité de mesure, utiliser cGy ou nC.

1. Aller à la page *Daily/Water Tank* Zap-X, puis cliquer sur *Open Both* dans la section *Shell/Door* :

Daily QA Steel Ball F Bracket Water Tank		
Table and Gantry Dose		
Gantry Move To: North Pole Move Specify Distance to Move: Axial: 0 Oblique: 0 Move By	Table Position	# 510P G
Door/Shell Open Door Close Door Open Shell Close Shell Open Both Close Both		
P 2 0.00 KV 95 MA 25 MS 20 Axial 270.0 Oblique 90.0 Tabl	le 0.0 -0.1 0.0 Collimator 25.0 💿 🔊 🖉	

- 2. Tirer lentement manuellement la table du patient hors du portique pour la sortir complètement jusqu'à ce qu'elle s'arrête.
- 3. Appuyer sur la touche sur le boîtier de commande suspendu du contrôle PTW pour déplacer le détecteur à al position SAD.
- 4. Lever le détecteur à -7,0 mm en appuyant sur la touche us suspendu.

- 5. Retirer le microSilicon en même temps que le support, puis le placer sur le côté du réservoir d'eau sans desserrer la vis en plastique blanche retenant le détecteur.
- 6. Remettre le support en place ainsi que le dispositif de pointage PTW.
- 7. Ajouter de l'eau distillée jusqu'à ce que le niveau d'eau atteigne la partie supérieure de la pointe, puis enlever de l'eau au besoin pour vous assurer que le niveau d'eau est exact.

- 8. Retirer le dispositif de pointage PTW, puis le remplacer par le microSilicon PTW/support.
- 9. Appuyer sur pour remettre le détecteur à la position SAD (0,0,0).
- 10. Pousser la table du patient avec le réservoir d'eau complètement à l'intérieur du portique. Avec l'aide de la 2^e personne, déplacer manuellement le réservoir d'eau à la position précédemment enregistrée à l'aide du pointeur de broches Zap. (En déplaçant la table du patient dans le portique, la section inférieure de la table doit se trouver complètement à l'intérieur jusqu'à l'arrêt complet avant de commencer à déplacer la section supérieure vers l'intérieur.)
- 11. Aller à Zap-X depuis Daily QA/Water Tank.

Daily QA Steel Ball F Bracket <u>Water Tank</u>		
Table and Gantry Dose		1
Gantry	Table Position	
Move To: Move		
Specify Distance to Move:	Note: User must manually position the table.	
Axial: 0 Oblique: 0 Move By		
ر Door/Shell		
Open Door Close Door		
Open Shell Close Shell		
Open Both Close Both		
P 🛠 KV 75 MA 35 MS 57 Axial 1800 Oblique 180.0 Table 1	(10 400 -500 Collimator 00 @ @ @ @ @ @ @	• I • •

- 12. Appuyer sur la touche Close Both dans la section Door/Shell.
- 13. Procéder au centrage du détecteur tel que décrit dans le Chapitre 5.
- 14. Le mesure du facteur de sortie pour Zap-X implique 8 différentes tailles de collimateur, soit 25, 20, 15, 12.5, 10, 7.5, 5 et 4 mm.

- 15. L'administration de dose pour chaque collimateur sera définie à 200-500 Mu et la dose de chaque collimateur est mesurée avec le détecteur *microSilicon* PTW à un SAD de 450 mm. Zap recommande normalement d'exécuter la mesure au moins 3 fois pour confirmer des résultats reproductibles.
- 16. Une fois que le détecteur est centré sur le faisceau de photons, déconnecter le câble du détecteur de champ du tandem, puis le connecter au dosimètre PTW UNIDOS.
- 17. Il y a trois types différents de dosimètres PTW UNIDOS, soit UNIDOS Webline, UNIDOS Romeo et UNIDOS Tango. Dans le manuel, nous abordons uniquement la méthode utilisant UNIDOS Webline et UNIDOS Romeo.

18. Pour la configuration et le fonctionnement de UNIDOS Webline :

a. Mettre le commutateur d'alimentation sous tension à l'arrière du dosimètre, puis appuyer immédiatement sur le bouton de mise en marche à l'avant comme illustré :

Press this button to turn on (Green LED light will goes off.)

b. Utiliser les informations ci-dessous pour sélectionner ou changer le détecteur avec les fonctionnalités *UNIDOS Webline* ci-dessous.

c. Appuyer sur pour choisir *Select detector*, puis sélectionner *microSilicon* pour *Output Factor Measurement*. Si plus d'un détecteur microSilicon est installé, enregistrer votre numéro de série avant utilisation.

Detector	Name	Туре	S/N Qt
Select detector	Semiflex 0.125	cc TN31010	006229 Dw
Edit current detector	Semiflex 0.125	cc TN31010	006989 Dw
Edit detector database	Microchamber	A14SL	XAH042 Dw
asurements			Dw
Set integration time	Semiflex 0.125	cc TN31010	006990 Dw
onfigure display	Semiflex 0.125	cc TN31010	007168 Dw
nable/disable corrections	Semiflex 0.125	icc TN31010	006228 Dw
nable/disable AutoStart	Srs	TN60018	000626 Dw
nable/disable statistics			Dw
bet alarm thresholds	Semiflex 0.125	5cc TN31010	005877 Dw
Set cuctom data / King	OP Service op		Dw
	Seminex 3D	TN31021	142551 Dw
ect detector to be connected.	Microsilicon	TN31021	DW

- d. Tourner le bouton pour sélectionner *microSilicon* ou (*microDiamond* si souhaité), puis appuyer sur le bouton pour sélectionner.
- e. Pour des détails sur le fonctionnement d'UNIDOS ou pour ajouter un détecteur à UNIDOS, consulter le manuel d'utilisation du PTW UNIDOS pour des instructions.

- 19. Pour la configuration et le fonctionnement de UNIDOS Romeo :
 - a. Mettre le *commutateur d'alimentation* sous tension à l'arrière du dosimètre, puis appuyer sur le bouton d'alimentation à l'avant comme illustré :

 b. Toucher la section Detector près de la partie inférieure de l'écran du dosimètre, puis passer à une autre page pour la sélection d'un détecteur. Sélectionner *microSilicon* (ou *microDiamond* si souhaité).

c. Après avoir vérifié le type de détecteur et enregistré le numéro de série, le détecteur est prêt à réaliser des mesures du facteur de sortie.

► Profile -		MEAS	1. 30
► Correction		INTEG 10 s	
Measuring range	0.0	HOLD	
MEDIUM		ZERO	
+0 V	0.0	RESET	心
▶ Detector microSilicon (T	60023, 151962)	9 🖻 🌣	
			Rome

- 20. Si Radiological unit est sélectionné, nous devrons mesurer la température de l'eau dans le réservoir d'eau, de même que la pression barométrique pour la correction de la température/pression.
- 21. Finalement, appuyer sur le bouton *Zero*, fin prêt pour la *mesure du facteur de sortie* :
- 22. Aller à la page *Daily/Water Tank* Zap-X, puis confirmer que le portique se trouve à North Pole :

Daily QA Steel Ball F Bracket <u>Water Tank</u>		
Table and Gantry Dose		
Gantry Move To: North Pole Move Specify Distance to Move: Axial: 0 Oblique: 0 Move By	Table Position Note: User must manually position the table.	⇔ \$109 G
Door/Shell Open Door Close Door Open Shell Open Both Close Both		
P 😧 0.00 KV 95 MA 25 MS 20 Axial 270.0 Oblique 90.0 Table	e 0.0 -0.1 0.0 Collimator 25.0 🔮 🙆 🖉 😂	

- 23. Cliquer sur l'onglet **Dose**, puis utiliser l'onglet **déroulant** du collimateur pour sélectionner 25 mm collimator.
- 24. Sur l'onglet Request Dose, saisir 500 Mu.

Daily QA Steel Ball F Bracket Water Tank	
Table and Gantry Dose 1	
Collimator Turn Laser On Disable	
Requested MU S0000 3 Beam On PHV Auto-off HV is off Beam is off	
Calibration Primary Rate (MU/min) 1.958 Secondary Rate (MU/min) -0.007 Primary MU 1614.525 Secondary MU 1565.285 Measured Dose (cGy) Compute	# 510P B
Working Primary Factor 1.000 I Reset 1 I Save I	
Saved Primary Factor 1.000 Saved Secondary Factor 1.000	
P 🛠 0.00 KV 95 MA 25 MS 20 Axial 270.0 Oblique 90.0 Table 0.0 -0.1 0.0 Collimator 25.0 💿 🖉 🚳 📿 🔊	s 💀 🕕 🐌
- 25. Depuis la console, appuyer sur le bouton de gauche pour activer **HV**, puis cliquer sur l'onglet **Beam-On** dans la section Beam.
- 26. Après avoir appuyé sur *Beam-On*, il deviendra jaune. Il est recommandé de sélectionner HV Auto-off pour mettre le faisceau hors tension lorsque la dose requise est atteinte.

- 27. Aussitôt que Dose ou Dose Rate s'affiche, UNIDOS affichera Dose et Dose Rate en même temps. Une fois que HV est désactivé, Dose demeure à l'écran jusqu'à ce qu'au HV suivant.
- 28. Enregistrer les trois mesures ou plus et faire la moyenne pour chaque collimateur.
- 29. Normaliser la mesure de la dose en divisant toutes les moyennes des mesures de la dose de tous les collimateurs par la valeur moyenne de la dose du collimateur de 25 mm.
- 30. Un exemple d'un graphique typique de la mesure de sortie avec les valeurs normalisées de chaque collimateur par rapport aux 8 tailles de collimateurs est donné ci-dessous :

31. En comparant le facteur de sortie entre microSilicon et microDiamond, les différences sont très faibles.

- 32. La mesure du facteur de sortie est terminée.
- 33. Ouvrir la porte ainsi que la coque.
- 34. Retirer le réservoir d'eau PTW et le support PTW du système en suivant la procédure décrite dans le chapitre 4.

Chapitre 8 : Analyse des données de faisceau et exemples d'erreurs typiques

Les détails des protocoles pour la configuration de l'analyse des données **PH PDD** et **PH Profile** sont fournis dans le **Chapitre 3.** Ce chapitre fournit des instructions sur la façon d'examiner les données de faisceau à des fins de validation et des exemples d'erreurs de configuration pendant la configuration du réservoir d'eau PTW.

1. Cliquer sur Mephysto of BeamScan 4.4 sur votre ordinateur de bureau, sélectionner

PĨW	V			
ME	PHY	STO ®	Navigato	P
- Fave	orites			
R	Л	R		
 App 	lication	S		
ned Data Analys	is			
lay, analyze and pute isodose cur	process s ves and 3	canned data. 3D dose graphs		
	10 AUCUNT	LINAC QA		
	48.1	Absolute Dosi	imetry	
		Relative Dosir	netry	
		In-vivo Dosim	etry	
- Tool	lbox			
Ę	.	Configuration		• •

2. Cliquer sur ^{Open}, puis sélectionner le dossier à analyser.

PTW-D	DataAnaly	ze - D													-		×
ile <u>E</u> dit	t <u>V</u> iew	Graphics	Jools	Window	1												
Open	Close	Save	Gro ² Analyze	X Process	n Profiles	PDDs	All Scans	(Sodoses	9 30	Color Wa	sh Discre	ete Con	tinuous	© Zoom	Q 1:1 Size	? Conten	ts
Visible	Туре								Ľ	21							
		1							120-	T.							
									110	Į.							
									100								
									90								
									80								
									70-								
									60								
									50								
									40								
									40								
									30								
									20-								
									10								
		-100	-90	-80 -7	0 -60	-50	-40 -30	-20	-10 0	0 10	20 3	0 40	50	60	70 8	0 90	+
									[m	m]							
ady		1									_	_				No valid sc	ans

- 3. Maintenir la touche Ctrl de votre clavier enfoncée, puis sélectionner le fichier ou les fichiers à analyser.
- 4. Cliquer sur

Open

près du bas de la page, puis sélectionner le fichier concerné.

Look in: 📔 Raw Data	• 🖬 🖆 🐨 •		
Name	Date modified	Туре	Size
4mm-011421.mcc	1/14/2021 3:49 PM	MCC File	81 KB
5mm-011421.mcc	1/14/2021 3:31 PM	MCC File	82 KB
7.5mm-011421.mcc	1/14/2021 3:13 PM	MCC File	84 KB
10mm-011421.mcc	1/14/2021 2:56 PM	MCC File	85 KB
12.5mm-011421.mcc	1/14/2021 2:32 PM	MCC File	87 KB
15mm-50, 150, 200, 250-011421.mcc	1/14/2021 2:09 PM	MCC File	53 KB
15mm-SSM-overheated.mcc	1/14/2021 1:16 PM	MCC File	48 KB
20mm-011421.mcc	1/14/2021 1:02 PM	MCC File	92 KB
25mm pdd end 011421.mcc	1/14/2021 3:56 PM	MCC File	23 KB
25mm-011421.mcc	1/14/2021 12:26 PM	MCC File	95 KB

5. Une fois le fichier sélectionné ouvert, le PDD et les profils des fichiers sélectionnées s'afficheront comme suit :

Dpen	Close Save	60 Analy	ze Process		PDDs	All Scans	Isodoses 3		Twash Di	Screte Con	tinuous	€ Zoom 1:	Q 1 Size	? Contents
Visible	Туре	Modality	Energy [MV/MeV]	Field [cm x cm]	Depth I [mm]			[%]						
•	PDD	Photons	3.0	2.50 x 2.50			1	20-						
•	Inplane Profile	Photons	3.0	2.50 x 2.50	7.00									
•	Crossplane Profile	Photons	3.0	2.50 x 2.50	7.00		1	10-						
~	Inplane Profile	Photons	3.0	2.50 x 2.50	50.00			1						
•	Crossplane Profile	Photons	3.0	2.50 x 2.50	50.00		1	00						
-	Inplane Profile	Photons	3.0	2.50 x 2.50	100.00			(+8)						
✓	Crossplane Profile	Photons	3.0	2.50 x 2.50	100.00			90-1						
•	Inplane Profile	Photons	3.0	2.50 x 2.50	200.00									
•	Crossplane Profile	Photons	3.0	2.50 x 2.50	200.00			B0-	1					
•	Inplane Profile	Photons	3.0	2.50 x 2.50	250.00				1					
•	Crossplane Profile	Photons	3.0	2.50 x 2.50	250.00			70						
						-100		50- 40- 30- 20- 10- 0		100	<u> </u>	200		
					>				Inplane / Ur	osspiane / De	pth (mm)			

6. Pour l'analyse PDD, cliquer sur l'icône PDDs , puis seule le graphique PDD s'affichera sans graphique de profil comme présenté ci-dessous :

Dpen Close	Save Ana	o' 🗙 Ilyze Process	Profiles	PDDs	All Scans	Isodoses	3D	Color V	k Vash D	liscrete	Continuous	Zoom	(E) 1:1 Size	e Conter	ts
Visible Typ	e Modalit	y Energy [MV/MeV] s 3.0	Field [cm x cm] 2.50 x 2.50	Toepth I (mm)	[22] 120 110 100 90 80 70 80 60 60 40 40 30 20 10 0 0	20 40	0 60	×	+ + + + + + + + + + + + + + + + + + + +	+ 120 Depth (r	140 160 mm]	+ + +	200 22	20 240	261

60

7. Cliquer sur l'icône Analyze pour réaliser l'analyse, puis les résultats s'afficheront sur le côté gauche :

Siemens	Edit	Horizontal	Vertical	Discrete	Continuous	Coom	© 1:1 Siz	te Clos	k se T	frack-it	Content	s	
F100 R50 Rx (mm) (mm) (mm) 7.70 80.20 27.	QI 56 0.4357	SCD Fiel (cm) (cm 45.0 2.5	Id Size 1 x cm) 0 x 2.50	PDD	2 120 120 100 90 60 50 60 50 40 30 20 10 0 20	40 6		100 120	140 1	60 180		220 24	1 10 26

8. Pour les graphiques des profils, cliquer sur l'icône **Profiles**, puis tous les profils des différentes profondeurs s'afficheront comme suit :

Ψ

- 9. Cliquer sur pour décocher le graphique et le profil de celui décoché sera retiré de l'écran.
- 10. Pour l'analyse des profils, tenir la touche **Ctrl** enfoncée sur votre clavier, puis cliquer à gauche sur la souris pour sélectionner les profondeurs pour l'analyse. (Les sélections seront mises en surbrillance en bleu.)

```
60^
```

11. Cliquer sur l'icône Analyze pour effectuer l'analyse, puis le résultat des fichiers sélectionnés pour les différentes profondeurs s'afficheront comme suit :

PTW-Data	Analyze Ar	nalyze												
<u>Analyze</u> <u>E</u> d	it <u>V</u> iew	Graphics	Tools Win	ndow	2									
Protocol: Zap:X	•	Edit	Det	<mark>]</mark> ails S	C Symmetry	Horizo	ntal Ver	tical Discret	e Conti	t nuous	() Zoom 1:1	Size	× Close	Track-it
? Contents														
CAX Dev. [mm]	Field Size [mm]	Pen. Left [mm]	Pen, Right [mm]	Dmax [%]	Dmin [%]	Flatness [%]	Symmetry [%]	Field Size at SID [cm]	SSD [cm]	Field Size [cm x cm]	Curve Type	Depth [mm]		
-0.01	25.17	2.02	2.13	100.18	91.88	109.03	0.61	2.479	45.0	2.50 x 2.50	Inplane Profile	7.00		
-0.20	27.57	2.53	2.64	100.15	89.92	111.37	0.55	2.481	45.0	2.50 x 2.50	Inplane Profile	50.00		
-0.11	30.38	2.93	3.10	100.50	90.22	111.40	0.55	2.486	45.0	2.50 x 2.50	Inplane Profile	100.00		
-0.48	36.00	3.71	3.96	100.21	89.57	111.88	0.46	2.492	45.0	2.50 x 2.50	Inplane Profile	200.00	1	
-0.23	38.79	4.12	4.35	100.44	89.38	112.37	0.48	2.494	45.0	2.50 x 2.50	Inplane Profile	250.00		

- 12. Il est important de confirmer que la configuration du réservoir d'eau a été réalisée correctement avant la numérisation des profiles PDD, car cela aura une incidence sur des paramètres clé comme Dmax, D50% et D100%. Parmi les erreurs fréquentes, on retrouve le niveau d'eau qui est trop bas (majorité des cas) en raison de l'évaporation de l'eau si le réservoir d'eau est resté trop longtemps à l'intérieur du portique. Le débit total typique circulant dans le portique est d'environ 12 m/s à 22 degrés C et l'évaporation d'eau survient plus tôt dans un environnement plus chaud et moins humide.
- 13. La solution facile pour vérifier le réglage du niveau d'eau sans utiliser Trufix ou sans ouvrir la coque/porte consiste à effectuer une numérisation PDD initiale, puis d'effectuer immédiatement une analyse. Voici un exemple pour illustrer une bonne configuration :
 - En utilisant l'icône Zoom pour agrandir la zone encerclée, vérifier si le niveau d'eau est trop bas ou trop élevé. Pour microSilicon, le niveau d'eau devrait être 0,9 mm +/- 0,1 mm comme illustré ci-dessous :

14. Les graphiques ci-dessous illustrent l'impact d'un niveau d'eau incorrect dans le réservoir d'eau :

- 15. Normalement, l'eau s'évapore si le réservoir d'eau a été placé à l'intérieur du portique à un débit d'air élevé après 4 ou 5 heures. Il est recommandé de vérifier de nouveau le niveau d'eau avec le dispositif de pointage PTW si le PDD et les tests de profil ont pris plus de 4 heures.
- 16. Pour vérifier le bon niveau d'eau, s'assurer que la réflexion de la pointe et le dispositif de pointage se touchent comme illustré :

17. Cela peut être corrigé en déplaçant le graphique PDD manuellement de la même quantité de changement.

- a. Si le niveau d'eau est **plus haut** que le repère, déplacer le graphique PDD vers la **droite** de la même différence.
- b. Si le niveau d'eau est **plus bas** que le repère, déplacer le PDD vers la **gauche** de la même différence.
- 18. Pour les mesures du facteur de sortie, il est recommandé d'effectuer le centrage du détecteur pour chaque collimateur plus petit que 10 mm. Cela permettra d'assurer que le collimateur est aligné avec le faisceau de photons.

Chapitre 9 : Acquisition de données de faisceau pour l'algorithme de l'étalonnage de la dose

Format de fichier de données de faisceau

Les fichiers de données de faisceau en texte brut (ASCII) doivent être générés conformément aux procédures de formatage spécifiques décrites plus loin dans cette section.

Facteur de sortie - 1 fichier

Le fichier de facteur de sortie contient deux colonnes et huit lignes. La colonne de gauche indique les tailles du collimateur. La colonne de droite contient les valeurs du facteur de sortie qui correspondent à la taille du collimateur individuel à gauche (voir la Figure 1-22 pour un exemple).

OFSam	ple.txt - N	otepad		-	×
<u>File</u> <u>E</u> dit	F <u>o</u> rmat	View	Help		
4	0.3966				^
5	0.6089				
7.5	0.7225				
10	0.9033				
12.5	0.9622				
15	0.9867				
20	0.9989				
25	1				
					~
<					>

Figure 1-22 Fichier de facteur de sortie

Fichiers MCC

Les données générées par les modules de mesure et d'analyse PTW sont enregistrées dans des fichiers ASCII avec l'extension de fichier *.mcc.

Chaque ligne d'un fichier de ce type se compose d'un mot-clé et d'une note, d'une ou plusieurs valeurs de données. Seules les valeurs de données essentielles à la description de la tâche sont incluses dans le fichier. Voir l'annexe A du *Manuel de l'utilisateur PTW* pour plus d'informations.

Pour le système de radiochirurgie Zap-X, les fichiers suivants doivent être générés en fonction des données de mesure PTW décrites dans les sections précédentes en tant qu'entrée pour le Treatment Planning System (TPS) :

• Rapport tissu-fantôme (TPR) – 1 fichier

• Rapport hors centre (OCR) – 1 fichier

Où les données TPR sont converties à partir des données PDD. Consulter le personnel de Zap pour savoir comment convertir les données de mesure PTW au format de données approprié pour TPS.

Glossaire

Acronymes et abréviations Définitions

Κ	
L	
Μ	
Ν	
0	
	OCR - Rapport hors centre Le rapport de la dose absorbée à un point hors axe donné à la dose sur l'axe central à la même profondeur.

OF - Facteur de sortie

Le rapport de la dose absorbée d'une taille de champ particulière à la dose à une taille de champ de référence. Pour le système Zap-X, la taille du champ de référence est de 25 mm.

Ρ

PDD- Pourcentage de rendement en profondeur de dose

Le rapport de la dose absorbée à une profondeur quelconque à la dose absorbée à une profondeur de référence fixe en utilisant un SSD constant. Spécifié en pourcentage.

R

Q

S

SAD - distance source-axe

La distance entre la source de rayonnement et l'axe de rotation de la source de rayonnement. La SAD nominale du Zap-X est de 450 mm.

SSD - Distance source-surface

La distance entre la source de rayonnement (cible de rayons X) et la surface du fantôme.

Т

Taille de champ

La taille de champ de rayonnement. Généralement définie à une SAD de référence. Les tailles de champ Zap-X sont définies à une SAD de 450 mm.

TPR - Rapport tissu-fantôme

Le rapport de la dose absorbée à un point donné à la dose à une profondeur de référence fixe en utilisant une SAD constante. La profondeur de référence du Zap-X est de 7,0 mm.

U

V			
W			
X			
Y			
Z			